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Volumes

Cell Proliferation
• Compared to non-storing dark-eyed juncos, food-storing black-capped chickadees had more newly born 
(BrdU-IR) cells in the HP, pSVZ, and dSVZ indicating that these structures may have evolved a species-
specific specialization. 

• Strikingly, non-storing dark-eyed juncos showed no seasonal differences at all. 
• In contrast, compared to those caught in the spring, fall-caught black-capped chickadees had significantly 
more newly born cells in both the HP and septum. 
• Seasonal increases in the pSVZ and dSVZ were not observed. Since black-capped chickadees had higher 
rates of cell proliferation in both regions of the SVZ compared to dark-eyed juncos, this may be a species-
specific specialization. However, since it is not seasonally mediated, it is possible that this specialization may 
not be related to food-storing. Alternatively, the process of cell division could be followed by migration out of 
the SVZ and into the HP much more rapidly in fall-caught black-capped chickadees.
• Taken together, results indicate that cell proliferation is enhanced in food-storers, especially during the fall, 
and may reflect a selective adaptation in the brain designed to meet the cognitive demands of food-storing.

• Regardless of season, black-capped chickadees had significantly larger relative HP and septal volume 
compared to dark-eyed juncos.
• Relative HP and septal volume in both species increased during the spring, partially confirming the findings 
by Hoshooley and Sherry (2007) but refuting the results by Smulders et al. (1995).
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Figure 1. Black-capped 
chickadee

Figure 2. Dark-eyed 
junco

Figure 3. The three brain 
structures measured for 
volume analysis are outlined 
separately: the HP, septum, 
and TEL. Bar = 5mm.

• Food-storing birds can remember numerous cache locations over many hours or even months. Successful 
retrieval of caches relies on hippocampus (HP) dependent spatial memory (Vander Wall, 1990). 
• The HP, in turn, shares reciprocal connections with the septum, a structure also involved with memory.

• The survival value of HP-dependent recall for cache locations may have created an evolved brain 
specialization in food-storers (Hampton & Shettleworth, 1996). 

• HP and septal volume in food-storing birds is larger than that of non-storers (Krebs, Sherry, Healy Perry, & 
Vaccarino, 1989; Sherry, Vaccarino, Buckenham, & Herz, 1989; Shiflett, Gould, Smulders, and DeVoogd, 
2002).
•Although food-storing behavior varies seasonally, and seasonal changes in HP volume have been observed, the 
data are not always consistent. While Smulders, Sasson, and DeVoogd (1995) reported a fall peak in HP volume 
coinciding with the peak in storing behavior, others report spring increases in HP volume (Hoshooley and 
Sherry, 2007).
• In food-storing birds, septal volume has also been found to increase during October, suggesting that an 
evolved specialization in food-storers may include both the HP and the septum (Shiflett et al., 2002).
• Fall peaks in cell count have also been observed in the food-storing black-capped chickadee (Smulders, 
Shiflett, Sperling, and DeVoogd, 2000).
•While food-storing black-capped chickadees have more adult HP neurogenesis than non-storing house 
sparrows, the seasonal data are not always consistent either. While Barnea and Nottebomhm (1994) 
demonstrated a peak in HP neurogenesis during the fall, Hoshooley and Sherry (2007) reported that 
neurogenesis remained constant across both seasons. 

• The current study sought to resolve these discrepancies by comparing volumes and cell proliferation in the HP, 
septum, and stem cell-rich subventricular zone (SVZ) of food-storing black-capped chickadees and non-storing 
dark-eyed juncos captured during the fall and spring in coastal Maine. 

• Seventeen adult food-storing black-capped chickadees (Poecile atricapillus) and sixteen adult non-storing 
dark-eyed juncos (Junco hyemalis) were captured in the fall (October, November 2005), and spring (April, May 
2006) at two field sites in Maine: The Coastal Studies Center in Orr’s Island, and Coleman Farm in Brunswick. 

• To label mitotic cells, all birds received one intramuscular injection of BrdU 48 hrs after trapping. 

• On day 10 of captivity, all birds were euthanitized and transcardially perfused with 0.1 M phosphate buffered 
saline followed by 4% paraformaldehyde. Brains were postfixed in 4% paraformaldehyde for 24 hours, 
transferred to 0.1M phosphate buffer, embedded in 8% gelatin, and then cut into 5 equivalent sets of 40µm 
coronal sections using a vibratome. 

•All slices containing the HP or telencephalon were used for volume analysis and BrdU IHC.
• BrdU IHC was used to visualize newly born cells. Following standard IHC procedures previously reported by 
Lee et al. (2007), primary incubation was achieved with 1:500 anti-BrdU (Roche). Secondary incubation with 
1:200 biotinylated horse anti-mouse IgG (Vector) was followed by incubation in 1:200 avidin-biotin-peroxidase 
complex (Vector) and detection was accomplished using diaminobenzidine (Sigma).

• Sections were individually digitized using a Polaroid SprintScan scanner mounted with a PathScan Enabler 
(Meyer Instruments Inc.). HP, septum, and telencephalon (TEL) of each hemisphere were separately outlined 
and measured using NIH Image software.

• Volumes of HP, septum, and TEL were computed using the formula for a truncated cone (Krebs et al., 1989).  
Relative volumes for HP and septum were determined by dividing the volume of HP or septum by TEL volume.

•BrdU-IR cells were visualized using DIC illumination on a Nikon E-800 microscope using NeuroLucida 
software (MicroBrightField, Inc.).
• BrdU-IR cells were counted in the HP, septum, proximal SVZ (pSVZ; adjacent to the HP), and distal SVZ 
(dSVZ; not adjacent to the HP).
• Density of BrdU-IR cells (expressed as the number of cells/mm2) were calculated and compared between 
groups in order to control for species differences in brain region size.

Figure 4. 
Counting 
areas

Figure 8. Dark-
eyed junco pSVZ, 
dSVZ, and septum.

Figure 13. Fall-caught black-capped 
chickadees had significantly more 
BrdU-IR cells in the pSVZ compared to 
both fall- and spring-caught dark-eyed 
juncos (p<0.05).

Figure 14. Fall-caught black-capped 
chickadees had significantly more 
BrdU-IR cells in the dSVZ compared to 
both fall- and spring-caught dark-eyed 
juncos (p<0.05).
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Figure 5. HP and 
pSVZ in a black-
capped chickadee

Figure 6. HP and 
pSVZ in a dark-
eyed junco

Figure 7. Black-
capped chickadee 
pSVZ, dSVZ, and 
septum.

Figure 9. Across both seasons, relative HP 
volume was significantly larger in the black-
capped chickadee compared to the dark-eyed 
junco (p<0.05). However, within each species, 
relative HP volume was significantly larger in 
the spring compared to the fall.

Figure 10. Across both seasons, relative septal 
volume was significantly larger in the black-
capped chickadee compared to the dark-eyed 
junco (p<0.05). However, within each species, 
relative septal volume was significantly larger in 
the spring compared to the fall.

Figure 11. Fall-caught black-capped chickadees 
had significantly more BrdU-IR cells in the HP 
compared to spring-caught black-capped 
chickadees, fall-caught dark-eyed juncos, and 
spring-caught dark-eyed juncos (p<0.05).

Figure 12. Fall-caught black-capped 
chickadees had significantly more BrdU-IR 
cells in the septum than spring-caught black-
capped chickadees, but there were no 
differences between black-capped chickadees 
and dark-eyed juncos (p<0.05).
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